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Faculty of Mathematics

University ”Al.I. Cuza” Iaşi
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Abstract: In this paper, we continue the study of the Gould type integral introduced in [30] which generalizes the
results of [12, 13, 17, 28] and [29]. We obtain various classical properties, such as a mean type theorem, a Lebesgue
(Fatou respectively) type theorem, Hölder and Minkowski inequalities etc. Other results concerning measurability,
semi-convexity, diffusion and atoms are also established.
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1 Introduction

In [20] G. G. Gould introduced an integral for bound-
ed real functions with respect to finitely additive set
functions taking values in a Banach space, integral
which is more general that the Lebesgue one.

In the last years, the non-additive case and the
set-valued case received a special attention because
of their applications in mathematical economics, deci-
sion theory, artificial intelligence, statistics or theory
of games.

A. Precupanu and A. Croitoru generalized
Gould’s results [20], studying in [28] a Gould type in-
tegral for multimeasures with values in Pkc(X), the
family of all compact convex nonempty subsets of
a real Banach space X . Also, Gould type integrals
with respect to a (multi)submeasure were studied in
[12]–[19]. In [30], A. Precupanu, A. Gavriluţ and A.
Croitoru introduced and studied a Gould type integral
for bounded real functions with respect to a set multi-
function of finite variation with values in Pbf (X), the
family of all bounded closed nonempty subsets of a
real Banach space X .

On the other hand, notions as atoms, pseudo-
atoms, Darboux property, non-atomicity (with differ-
ent nonequivalent variants - see, for instance, [8, 9]),
(finitely) purely atomicity, semi-convexity, diffusion
were intensively studied in recent years, due to their
applications in many classical measure theory prob-
lems, physics and convex analysis (see [1, 3, 4, 5, 6,
8, 9, 10, 11, 21, 23, 24, 25, 26]).

That is why, in this paper, we study these no-
tions for the Gould type integral introduced in [30].
We prove that the Lebesgue theorem, Hölder and
Minkowski inequalities, Fatou lemma have here a cor-

respondent and our integral preserves properties like
semi-convexity or diffusion. Results regarding mea-
surability are also established.

2 Basic notions

Let (X, ∥ · ∥) be a real normed space, P0(X) the fam-
ily of all nonvoid subsets of X , Pb(X) the family of
all nonvoid bounded subsets of X , Pf (X) the family
of all nonvoid closed subsets ofX , Pbf (X) the family
of all nonvoid closed bounded subsets of X , Pbfc(X)
the family of all nonvoid closed bounded convex sub-
sets of X, Pkc(X) the family of all nonvoid compact
convex subsets of X and h the Hausdorff pseudomet-
ric on Pf (X), which becomes a metric on Pbf (X).

It is known that h(M,N) =
max{e(M,N), e(N,M)}, where e(M,N) =
sup
x∈M

d(x,N), for every M,N ∈ Pf (X) is the excess

of M over N and d(x,N) is the distance from x to N
with respect to the distance induced by the norm of
X.

We denote |M | = h(M, {0}) = sup
x∈M

∥x∥, for

every M ∈ P0(X), where 0 is the origin of X .
For every M,N ∈ P0(X) and every α ∈ R, let

M + N = {x + y|x ∈ M,y ∈ N} and αM =
{αx|x ∈ M}. We denote by M the closure of M
with respect to the topology induced by the norm of
X .

On P0(X) we consider the Minkowski addition

”
•
+ ” [18], defined by:

M
•
+N =M +N, for every M,N ∈ P0(X).
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Let T be an abstract nonvoid set, P(T ) the family
of all subsets of T and C a ring of subsets of T .

By i = 1, n we mean i ∈ {1, 2, . . . , n}, for n ∈
N∗, where N is the set of all naturals and N∗ = N\{0}.
We also denote R+ = [0,+∞) and R+ = [0,+∞].

Some properties of h are presented in the fol-
lowing proposition (see Hu and Papageorgiu [22],
Petruşel and Moţ [27]).

Proposition 1 Let A,B,C,D,An, Bn ∈ P0(X), for
every n ∈ N∗. Then:

I) (α + β)A = αA + βA, for every α, β ∈ R+

and convex A.
II) (A

•
+B)

•
+ C = A

•
+ (B

•
+ C).

III) (A
•
+B)

•
+ (C

•
+D) = (A

•
+C)

•
+ (B

•
+D).

IV) h(A,B) = h(A,B).
V) e(A,B) = 0 if and only if A ⊆ B.
VI) h(A,B) = 0 if and only if A = B.
VII) h(αA,αB) = |α|h(A,B), for all α ∈ R.
VIII) h(

∑n
i=1Ai,

∑n
i=1Bi) ≤

∑n
i=1 h(Ai, Bi).

IX) h(αA, βA) ≤ |α− β| · |A|, for all α, β ∈ R.

X) h(αA
•
+βB, γA

•
+ δB) ≤ |α− γ| · |A|+ |β−

δ| · |B|, for all α, β, γ, δ ∈ R.
XI) h(A+C,B+C) = h(A,B), for everyA,B ∈

Pbfc(X) and C ∈ Pb(X).
XII) If A,An ∈ Pb(X) and α, αn ∈ R, for every

n ∈ N∗, are so that h(An, A) → 0 and αn → α, then
h(αnAn, αA) → 0.

We now recall some classical notions:

Definition 2 A set function m : C → R+, with
m(∅) = 0, is said to be:

I) monotone if m(A) ≤ m(B), for every A,B ∈
C, with A ⊆ B.

II) superadditive if m(
∪
i∈I

Ai) ≥
∑
i∈I

m(Ai), for

every sequence of pairwise disjoint sets (Ai)i∈I ⊂ C,
with

∪
i∈I

Ai ∈ C, I ⊆ N.

III) subadditive if m(A ∪ B) ≤ m(A) +m(B),
for every A,B ∈ C, with A ∩B = ∅.

IV) a submeasure (in Drewnowski’s sense [7]) if
m is monotone and subadditive.

Example 3 I) If ν : C → R+ is a finitely additive set
function, then m : C → [0, 1] defined for every A ∈ C
by m(A) = ν(A)

1+ν(A) is a submeasure.
II) ([8,9]) Let mn : C → R+ be a submeasure

for every n ∈ N. Then the set function m : C → R+

defined by m(A) = sup
n
mn(A), for every A ∈ C, is a

submeasure, too.

Remark 4 Suppose m : C → R+ is a submeasure of
finite variation. If m denotes the variation of m on
P(T ), then:

I) m is finitely additive on C.

II) The following statements are equivalent:
i) m is o-continuous;
ii) m is σ-subadditive;
iii) m is σ-additive on C;
iv) m is o-continuous on C.

Definition 5 For a set multifunction µ : C → P0(X),
with µ(∅) = {0}, we consider:

I) the extended real valued set function |µ| defined
by |µ|(A) = |µ(A)|, for every A ∈ C.

II) the variation µ of µ defined by µ(A) =

sup{
n∑

i=1
|µ(Ai)|}, for every A ∈ P(T ), where the

supremum is extended over all finite families of pair-
wise disjoint sets {Ai}i=1,n ⊂ A, with Ai ⊆ A, for
every i ∈ {1, . . . , n}.

µ is said to be of finite variation on C if µ(A) <
∞, for every A ∈ C.

Definition 6 Let µ : C → P0(X) be a set multifunc-
tion, with µ(∅) = {0}. µ is said to be

I) monotone if µ(A) ⊆ µ(B), for everyA,B ∈ C,
with A ⊆ B.

II) a multimeasure if µ(A ∪B) = µ(A) + µ(B),
for every A,B ∈ C, with A ∩B = ∅.

III) a multisubmeasure if µ is monotone and
µ(A ∪ B) ⊆ µ(A) + µ(B), for every A,B ∈ C,

with A ∩B = ∅
(or, equivalently, for every A,B ∈ C).

IV) h-σ-subadditive if |µ(
∞∪
n=1

An)| ≤
∞∑
n=1

|µ(An)|, for every sequence of pairwise dis-

joint sets (An)n∈N∗ ⊂ C, with
∞∪
n=1

An ∈ C.

V) null-additive if µ(A ∪ B) = µ(A), for every
A,B ∈ C, with µ(B) = {0}.

VI) null–null-additive if µ(A ∪B) = {0}, for ev-
ery A,B ∈ C, with µ(A) = µ(B) = {0}.

VII) order-continuous (shortly, o-continuous) if
lim
n→∞

h(µ(An), µ(A)) = 0, for every decreasing se-

quence of sets (An)n∈N∗ ⊂ C, with
∞∩
n=1

An = ∅ (de-

noted by An ↘ ∅).
VIII) increasing convergent if

lim
n→∞

h(µ(An), µ(A)) = 0, for every increasing se-
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quence of sets (An)n∈N∗ ⊂ C, with
∞∪
n=1

An = A ∈ C

(denoted by An ↗ A).

Remark 7 If µ is Pf (X)-valued, then in Definition
6-II), III) it usually appears the Minkowski addition
instead of the classical addition because the sum of
two closed sets is not, generally, a closed set.

Remark 8 . I) µ is monotone and superadditive on
P(T ). Also (see [12]), if µ : C → Pf (X) is a mul-
ti(sub)measure, then µ is finitely additive on C and |µ|
is a submeasure.

II) Every monotone multimeasure is, particular-
ly, a multisubmeasure. Also, any multisubmeasure is
null-additive. Any null-additive set multifunction is
null-null-additive. The converses are not valid.

III) Let µ : A → Pf (X) be a multisubmeasure of
finite variation. The following statements are equiva-
lent:

i) µ is h-σ-subadditive;
ii) µ is order-continuous;
iii) µ is σ-additive on C.

3 Semi-convexity, Darboux property,
diffusion and atoms of set multi-
functions

We present some properties regarding semi-convexity,
Darboux property, diffusion and atoms for set multi-
functions. These properties will be discussed in sec-
tion 5 in relation with the Gould type set-valued inte-
gral.

The following notions are classical in measure
theory, but they are extended to the set valued case
(see for instance [2, 3, 4, 15, 16]).

Definition 9 Let µ : C → P0(X) be a set multifunc-
tion, with µ(∅) = {0}.

I) We say that µ
i) is semi-convex if for every A ∈ C, with µ(A) !

{0} , there is a set B ∈ C such that B ⊆ A and
µ(B) = 1

2 µ(A).

ii) has the Darboux property if for every A ∈ C,
with µ(A) ! {0} and every p ∈ (0, 1), there exists a
set B ∈ C such that B ⊆ A and µ(B) = p µ(A).

iii) is diffused if for every t ∈ T, with {t} ∈ C, we
have µ({t}) = {0}.

II) A set A ∈ C is said to be an atom of µ if
µ(A) ! {0} and for every B ∈ C, with B ⊆ A, we
have µ(B) = {0} or µ(A\B) = {0}.

III) We say that µ is

i) finitely purely atomic if there is a finite disjoint
family (Ai)i=1,n ⊂ C of atoms of µ so that T =

n
∪
i=1
Ai.

ii) purely atomic if there is at most a countable
number of atoms (An)n ⊂ C of µ so that µ(T\

∞
∪

n=1

An) = {0} (evidently, here C must be a σ-algebra).
iii) non-atomic if it has no atoms.

IV) We say that µ : C → Pkc(R) is induced by a
set function m : C → R+, with m(∅) = 0, if µ(A) =
[0,m(A)], for every A ∈ C.

Remark 10 I) The Lebesgue measure µ is diffused.
Also, the set functions m1,m2 : C → R+ defined for
every A ∈ C by m1(A) =

√
µ(A) and m2(A) =

µ(A)
1+µ(A) are diffused submeasures. The same are the
multisubmeasures induced by them.

II) If µ1, µ2 : C → P0(X) are diffused multi-
measures, then the same is the multimeasure µ1 + µ2
defined by (µ1 +µ2)(A) = µ1(A) +µ2(A), for every
A ∈ C.

III) Let µ : C → P0(X) be a set multifunction,
with µ(∅) = {0}. Then the following statements are
equivalent:

a) µ is diffused;
b) |µ| is diffused;
c) µ is diffused on C.

The following result is obviously true.

Proposition 11 If the set multifunction µ : C →
P0(X), with µ(∅) = {0}, has the Darboux proper-
ty, then it is semi-convex.

Under some assumptions, the converse of Propo-
sition 11 is also valid, as shown below:

Theorem 12 Let C be a σ-ring and µ : C →
Pbfc(X) a monotone increasing convergent multi-
measure. Then µ has the Darboux property if and only
if µ is semi-convex.

Proof. The ”only if ” part results from Proposition 11.
The ”if” part. Every p ∈ (0, 1) has an expansion

p =
∞∑
n=1

an
2n , where an ∈ {0, 1}, for every n ∈ N∗. Let

A ∈ C, so that µ(A) ! {0} and let p ∈ (0, 1).
By the semi-convexity of µ, there is B1 ∈ C so

that B1 ⊆ A and µ(B1) =
a1
2 µ(A).

Analogously, there is B2 ∈ C so that B2 ⊆
A\B1 and µ(B2) = a2

22
µ(A) and so on. Consid-

er B =
∞
∪

n=1
Bn =

∞
∪

n=1
(

n
∪

k=1
Bk) ∈ C. We have
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µ(B) = lim
n→∞

n∑
k=1

µ(Bk) = lim
n→∞

n∑
k=1

ak
2k
µ(A) (with

respect to h). By Proposition 1-I and XII, it follows
µ(B) = pµ(A), as claimed. �

Remark 13 I) If µ is monotone, then µ is non-atomic
if and only if for every A ∈ C, with µ(A) ! {0},
there exists B ∈ C, with B ⊆ A, µ(B) ! {0} and
µ(A\B) ! {0}).

II) Let ν : C → R+ be a set function, with ν(∅) =
0 and µ the set multifunction induced by ν. Then µ has
the Darboux property if and only if ν has it.

III) [15] Suppose T is a locally compact Haus-
dorff space, B is the Borel δ-ring generated by the
compact subsets of T and µ : B → Pf (X) is a mul-
tisubmeasure. Then µ is non-atomic if and only if it is
diffused.

4 µ̃-totally-measurability

In this section we present some properties of µ̃-
totally-measurable functions. In the sequel, A is an
algebra of subsets of T , µ : A → Pf (X) is a set
multifunction so that µ(∅) = {0} and f : T → R an
arbitrary function.

Definition 14 I) A partition of a set A ∈ A is a finite
family P = {Ai}i=1,n of pairwise disjoint sets of A

such that
n∪

i=1
Ai = A.

We denote by P the class of all partitions of T and
if A ∈ A is fixed, by PA, the class of all partitions of
A.

II) For a set multifunction µ : A → P0(X),
we consider the extended real valued set function
µ̃ defined by µ̃(A) = inf{µ(B);A ⊆ B,B ∈
A}, for every A ∈ P(T ).

Remark 15 I) µ̃(A) = µ(A), for every A ∈ A, µ̃
is monotone and if µ is subadditive, then µ̃ is also
subadditive.

II) Suppose µ : A → Pf (X) is a multisubmea-
sure of finite variation. Then:

i) µ̃ is a submeasure.
ii) If, moreover, µ is h-σ-subadditive, then µ̃ is

σ-subadditive.

Definition 16 I) f is said to be µ̃-totally-measurable
on (T,A, µ) if for every ε > 0 there exists a partition
Pε = {Ai}i=0,n of T such that:

(∗)


a) µ̃(A0) < ε and
b) sup

t,s∈Ai

|f(t)− f(s)| = osc(f,Ai) < ε,

for every i = 1, n.

II) f is said to be µ̃-totally-measurable onB ∈ A
if the restriction f |B of f toB is µ̃-totally measurable
on (B,AB, µB), where AB = {A ∩ B;A ∈ A} and
µB = µ|AB

.

One can easily observe that if f is µ̃-totally-
measurable on T , then f is µ̃-totally-measurable on
every A ∈ A.

Definition 17 We say that a property (P ) holds µ-
almost everywhere (shortly, µ-ae) if there is A ∈
P(T ), with µ̃(A) = 0, so that the property (P ) is
valid on T\A.

Definition 18 Let fn : T → R be a real function for
every n ∈ N. One says that the sequence (fn)

I) converges in submeasure to f (denoted by

fn
µ̃−→ f ) if for every δ > 0, lim

n→∞
µ̃(Bn(δ)) = 0,

where

Bn(δ) = {t ∈ T ; |fn(t)− f(t)| ≥ δ}.

II) converges almost everywhere to f (denoted by

fn
a.e.−→ f ) if there is A ∈ P(T ) so that µ̃(A) = 0 and

(fn) pointwise converges to f on T\A.
III) (Li [23, 24]) is almost uniformly convergent

on T (with respect to µ̃), denoted by fn
au−→ f , if

there exists (Ak)k∈N∗ ⊂ A, with lim
k→∞

µ̃(Ak) = 0,

such that fn converges to f on T\Ak uniformly for
any fixed k ∈ N∗.

From now on, µ is supposed to be of finite varia-
tion.

Theorem 19 Let µ : A → Pf (X) be a multisubmea-
sure.

I) ([11]) If f, g : T → R are bounded µ̃-totally-
measurable functions, then:

i) f + g is µ̃-totally-measurable;
ii) λf is µ̃−totally-measurable, for every λ ∈ R;
iii) f2 and fg are µ̃-totally-measurable;
iv) |f |p is µ̃-totally-measurable, for every p ∈

[1,+∞);
v) If inft∈T f(t) > 0, then 1

f is µ̃-totally-
measurable.

II) Suppose f, g : T → R are bounded func-
tions. If |f |p and |g|p are µ̃-totally-measurable for
an arbitrary p ∈ [1,+∞), then |f + g|p is µ̃-totally-
measurable.

III) ([13]) If for every n ∈ N,fn : T → R is
bounded µ̃-totally-measurable and (fn) is convergent
in submeasure to a bounded function f : T → R, then
f is µ̃-totally-measurable.
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Remark 20 If φ : R → R is Lipschitz, then φ ◦ f is
µ̃-totally-measurable.

Proposition 21 Let µ : A → Pf (X) be a (mul-
ti)(sub)measure, f : T → R a bounded function and
A,B ∈ A, with A ∩ B = ∅. Then f is µ̃-totally-
measurable on A ∪ B if and only if it is µ̃-totally-
measurable on A and µ̃-totally-measurable on B.

Proof. The if part is straightforward. For the on-
ly if part, by the µ̃-totally-measurability of f on
A and B, there are PA

ε = {Ai}i=0,n ∈ PA and
PB
ε = {Bj}i=0,q ∈ PB satisfying the condition

(∗). Since µ is additive on A, then PA∪B
ε = {A0 ∪

B0, A1, . . . , An, B1, ..., Bq} ∈ PA∪B also satisfies
condition (∗), so f is µ̃-totally-measurable on A ∪
B. �

Remark 22 I) In the above proposition, A and B
need not to be disjoint. Indeed, if we take arbitrary
A,B ∈ A, since A ∪B = (A\B) ∪B and µ̃-totally-
measurability is hereditary, the statement follows.

II) Under the assumptions of the above proposi-
tion, if {Ai}i=1,p ⊂ A, then f is µ̃-totally-measurable

on
p
∪
i=1
Ai if and only if the same is f on every Ai, i =

1, p.

Proposition 23 If A is a σ-algebra, µ : A → Pf (X)
is an o-continuous (multi)(sub)measure, f : T → R
is a bounded function and (An)n ⊂ A are pair-
wise disjoint, then f is µ̃-totally-measurable on every
An, n ∈ N if and only if the same is f onA =

∞
∪

n=1
An.

Proof. The only if part immediately follows. The if
part: Since µ is an o-continuous (multi)(sub)measure
of finite variation, then µ is additive on A, so µ is also
o-continuous on A. We observe that A\

n
∪

k=1
Ak ↘ ∅,

so for every ε > 0, there is n0 ∈ N, with µ(A\
n0∪
k=1

Ak) < ε.
Since for every l = 1, n0, f is µ̃-

totally-measurable on Al, let {B1
j }j=0,p1

,

{B2
j }j=0,p2

, ..., {Bpn0
j }j=0,pn0

be the corresponding
partitions satisfying (∗).

The partition PA
ε = {(A\

n0∪
k=1

Ak), {B1
j }j=1,p1

,

{B2
j }j=1,p2

, . . . , {Bpn0
j }j=1,pn0

} ∈ PA satisfies (∗),

so f is µ̃-totally-measurable on A =
∞
∪

n=1
An. �

Theorem 24 Suppose A is a σ-algebra, µ : A →
R+ is an o-continuous submeasure of finite variation

and (fn)n∈N∗ is a sequence of uniformly bounded µ̃-
totally-measurable functions fn : T → R. Then g
defined for every t ∈ T by g(t) = inf

n∈N∗
fn(t), is µ̃-

totally-measurable.

Proof. One can easily check that for every t, s ∈ T,
the following inequality holds:

(1) |g(t)− g(s)| ≤ sup
n∈N∗

|fn(t)− fn(s)|.

Since for every n ∈ N∗, fn is µ̃-totally-
measurable, then for every ε > 0, there is a partition
Pn
ε = {An

j }j=0,pn
∈ P so that µ(An

0 ) <
ε

2n+1 and
(2)

sup
t,s∈An

j

|fn(t)− fn(s)| <
ε

2n+1
, for every j = 1, pn.

Let A0 =
∞
∪

n=1
An

0 ∈ A. Because µ is an o-

continuous submeasure of finite variation, then, by
Remark 4-II, µ is σ-additive on A, so,

µ(A0) ≤
∞∑
n=1

µ(An
0 ) <

∞∑
n=1

ε

2n+1
<
ε

2
.

On the other hand,

cA0 =
∞
∩

n=1
cAn

0 =
∞
∩

n=1
(An

1 ∪An
2 ∪ ... ∪An

pn) =

= (A1
1 ∪A1

2 ∪ ... ∪A1
p1) ∩ (A2

1 ∪A2
2 ∪ ... ∪A2

p2) ∩ ...

=
∪

(in)∈
∏∞

n=1 In

(A1
i1 ∩A

2
i2 ∩ . . . ∩A

n
in ∩ . . .),

where In = {1, 2, . . . , pn}, for every n ∈ N∗. Denote

the last reunion by
∞∪
n=1

Bn. Now let Cn =
n∪

k=1

Bk and

Dn = cA0\Cn, for every n ∈ N∗. We observe that

Bn ∩Bm = ∅ whenever n ̸= m,
∞∪
n=1

Cn =
∞∪
n=1

Bn =

cA0 and Dn ↘ ∅.
Since µ is o-continuous, there is n0(ε) = n0 ∈

N∗ such that µ(cA0\(
n0∪
i=1
Bi)) <

ε
2 . Because µ(A0) <

ε
2 , we get µ(c(

n0∪
i=1
Bi)) < ε.

From (1) and (2), we have:

sup
t,s∈Bi

|g(t)− g(s)| ≤ sup
t,s∈Bi

{ sup
n∈N∗

|fn(t)− fn(s)|} <
ε

2
,

∀i ∈ {1, . . . , n0}.

If we now consider the partition Pε =

{c(
n0∪
i=1
Bi), B1, . . . , Bn0}, we obtain that g is µ̃-

totally-measurable. �
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Corollary 25 Under the assumptions of Theorem 24,
the function h defined for every t ∈ T by h(t) =
sup
n∈N∗

fn(t), is µ̃-totally-measurable. Moreover, sup-

posing there exists lim
n→∞

fn(t) = f(t), for every t ∈
T , then f is µ̃-totally-measurable.

Theorem 26 Suppose (T, ρ) is a compact metric s-
pace, B is the Borel δ-ring generated by the compact
subsets of T , f : T → R is continuous on T and
µ : B → Pf (X) is a finitely purely atomic multisub-
measure. Then f is µ̃-totally-measurable on T .

Proof. According to Remark 22, it is sufficient to
establish the µ̃-totally-measurability of f on an ar-
bitrary, fixed atom A0 of µ. Since µ is a multisub-
measure, by [15], there is an unique a0 ∈ A0 so that
µ(A0\{a0}) = {0}.

Let ε > 0. Since f is continuous in a0, there is
δε > 0 so that for every t ∈ A0, with ρ(t, a0) < δε,
we have |f(t)− f(a0)| < ε

3 .
Let Bε = {t ∈ A0; ρ(t, a0) < δε} = A0 ∩

B(a0, δε), where B(a0, δε) is the open ball of center
a0 and radius δε. It results Bε ∈ B and since A0 is an
atom, we have µ(Bε) = {0} or µ(A0\Bε) = {0}.

If µ(Bε) = {0}, then since a0 ∈ Bε, we get
µ({a0}) = {0}. But µ(A0\{a0}) = {0}, so µ(A0) =
{0}, a contradiction. So, we have µ(A0\Bε) = {0}.
Now, one can easily observe that the partition PA0 =
{A0\Bε, Bε} assures the µ̃-totally-measurability of
f. �

5 Semi-convexity, diffusion, atoms
and purely atomicity for a Gould
type set-valued integral

In this section, we establish results concerning semi-
convexity, diffusion, atoms and purely atomicity for
the Gould type set-valued integral introduced and s-
tudied in [30].

In what follows, without any special assumptions,
we suppose A is an algebra of subsets of T , X is a
Banach space, µ : A → Pf (X) is a set multifunction
of finite variation, with µ(∅) = {0} and f : T → R
is a bounded function. We now recall the following
notions and results (see [12, 13, 28, 29]).

Remark 27 If µ : A → Pf (X) is of finite variation,
then µ takes its values in Pbf (X).

Definition 28 I) Let P = {Ai}i=1,n and P ′ =

{Bj}j=1,m be two partitions of T . P ′ is said to be
finer than P , denoted P ≤ P ′ (or P ′ ≥ P ) if for ev-
ery j = 1,m, there exists ij = 1, n so that Bj ⊆ Aij .

II) The common refinement of two partitions P =
{Ai}i=1,n and P ′ = {Bj}j=1,m is the partition P ∧
P ′ = {Ai ∩Bj} i=1,n

j=1,m

.

Definition 29 ([30]) For every partition P =
{Ai}i=1,n of T and every ti ∈ Ai, i =

1, n, let σf,µ(P ) (or, if there is no doubt,
σf (P ), σµ(P ), σ(P )) be:

σ(P ) =•
n∑

i=1

f(ti)µ(Ai)

= f(t1)µ(A1) + . . .+ f(tn)µ(An).

I) f is said to be µ-integrable on (T,A, µ) if
the net (σ(P ))P∈(P,≤) is convergent in (Pf (X), h),
where P is ordered by the relation ” ≤ ” given in
Definition 4.2.

If (σ(P ))P∈(P,≤) is convergent, then its limit is
called the integral of f on T with respect to µ, denoted
by
∫
T fdµ.
II) For an arbitrary B ∈ A, f is said to be µ-

integrable on B if the restriction f |B of f to B is µ-
integrable on (B,AB, µB).

Remark 30 I) f is µ-integrable on T if and only if
there exists a set I ∈ Pbf (X) such that for every ε >
0, there exists a partition Pε of T , so that for every
other partition of T , P = {Ai}i=1,n, with P ≥ Pε

and every choice of points ti ∈ Ai, i = 1, n, we have
h(σ(P ), I) < ε.

II) If µ is a multimeasure (multisubmeasure, sub-
measure, monotone set multifunction, respectively),
we obtain the corresponding definitions of [28, 12, 17,
29], respectively).

III) If µ is a multimeasure and f = 1, then∫
T fdµ = µ(T ).

IV) If µ : A → Pkc(X), then
∫
T fdµ ∈ Pkc(X).

V) Suppose m : A → R+ is an arbitrary set
function of finite variation with m(∅) = 0 and con-
sider the set multifunction µ : A → Pf (R) defined by
µ(A) = {m(A)}, for every A ∈ A. Then, by I), f is
m-integrable on T if and only if there is I ∈ R such
that for every ε > 0, there exists a partition Pε of T ,
so that for every other partition of T , P = {Ai}i=1,n,
with P ≥ Pε and every choice of points ti ∈ Ai, i =

1, n, we have |σ(P )−I| = |
n∑

i=1
f(ti)m(Ai)−I| < ε.

Here, I =
∫
T fdm.

Moreover, ifm is finitely additive and f = 1, then∫
T fdm = m(T ).

VI) Our integral, if it exists, is unique and has the
following properties: homogeneity and additivity with
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respect to the function f and the set multifunction µ,
additivity with respect to the set, monotonicity with re-
spect to the function f , to the set multifunction µ, and
to the set (see [28]–[30] for details. The assumption
of monotonicity is not necessary in [29], as observed
in [30]).

VII) Let m : A → [0, 1] be a submeasure of fi-
nite variation. One can easily check that the set func-
tion m1 : A → [0, 1] defined for every A ∈ A by
m1(A) = sinm(A) is also a submeasure of finite
variation (since m1(A) ≤ m(A), for every A ⊆ T ).
Suppose f : T → R is bounded. Since, according
to [17], m-integrability of f is equivalent to its m̃-
totally-measurability and because 2

π t ≤ sin t ≤ t, for
every t ∈ [0, π2 ), then f is m-integrable if and only if
f is m1-integrable.

Theorem 31 I) Let f : T → R be a µ-integrable
function. Then∣∣∣ ∫

T
fdµ

∣∣∣ ≤ sup
t∈T

|f (t)|·µ(T ).

II) Let f : T → R andA,B ∈ A, withA∩B = ∅.
If f is µ-integrable on A and µ-integrable on B, then
f is µ-integrable onA∪B and

∫
A∪B fdµ =

∫
A fdµ+∫

B fdµ.
III) Suppose µ : A → Pkc(X). If f : T → R

is µ-integrable on T , then f is µ-integrable on every
B ∈ A.

IV) If f : T → R is µ-integrable on every A ∈ A,
then the set multifunction M : A → Pf (X), defined
by

(∗∗)M (A) =

∫
A
fdµ, for every A ∈ A,

is a monotone multimeasure, M ≪ µ and M is
strongly absolutely continuous with respect to µ.

V) If f, g : T → Rare bounded functions so that
f is µ-integrable on T and f = g µ-a.e, then g is
µ-integrable on T and

∫
T fdµ =

∫
T gdµ.

Remark 32 By Theorem 31-I and Remark 10-III), we
immediately get that if µ : A → Pkc(X) is diffused,
then the same is M defined in (∗∗). Also, by Remark
30-I, if inf

t∈T
f(t) > 0, then the converse is also valid.

So, in this case, µ is diffused if and only if the same is
M .

Proposition 33 Let m1,m2 : A → R+ be set func-
tions of finite variation, so that m1 ≤ m2 and
m1(∅) = m2(∅) = 0, f : T → R and µ :
A → Pkc(R) the set multifunction defined by µ(A) =

[m1(A),m2(A)], for every A ∈ A. Then f is µ-
integrable on T if and only if f is m1-integrable on
T and m2-integrable on T and, in this case,∫

T
fdµ = [

∫
T
fdm1,

∫
T
fdm2].

Proof. f is m1-integrable on T and m2-integrable on
T if and only if for every ε > 0, there exists a partition
Pε of T so that for every other partitions of T , P ′ =
{Ai}i=1,n, P

′′ = {Bj}j=1,p, so that P ′ ≥ Pε, P
′′ ≥

Pε and every ti ∈ Ai, i = 1, n, sj ∈ Bj , j = 1, p, we
have

∣∣∣ n∑
i=1

f(ti)mk(Ai)−
p∑

j=1

f(sj)mk(Bj)
∣∣∣ < ε, k = 1, 2.

Since

h
( n∑
i=1

f(ti)µ(Ai),

p∑
j=1

f(sj)µ(Bj)
)
=

= h
(
[

n∑
i=1

f(ti)m1(Ai),

n∑
i=1

f(ti)m2(Ai)],

[

p∑
j=1

f(sj)m1(Bj),

p∑
j=1

f(sj)m2(Bj)]
)

= max

∣∣∣
n∑

i=1

f(ti)m1(Ai)−
p∑

j=1

f(sj)m1(Bj)
∣∣∣,

∣∣∣ n∑
i=1

f(ti)m2(Ai)−
p∑

j=1

f(sj)m2(Bj)
∣∣∣
 ,

it follows that for every ε > 0, there exists a partition
Pε of T so that for every other partitions of T , P ′ =
{Ai}i=1,n, P

′′ = {Bj}j=1,p, so that P ′ ≥ Pε, P
′′ ≥

Pε and every ti ∈ Ai, i = 1, n, sj ∈ Bj , j = 1, p, we
have

h(

n∑
i=1

f(ti)µ(Ai),

p∑
j=1

f(sj)µ(Bj)) < ε,

which means that f is µ-integrable on T .
Now, let us prove that

∫
T fdµ =

[
∫
T fdm1,

∫
T fdm2].

Since f is µ-integrable on T , m1-integrable on T
andm2-integrable on T , it results that for every ε > 0,
there exists a partition {Ck}k=1,l of T so that for every
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sk ∈ Ck, k = 1, l, we have

h(

∫
T
fdµ,

l∑
k=1

f(sk)µ(Ck)) <
ε

2
and

∣∣∣ ∫
T
fdmi −

l∑
k=1

f(sk)mi(Ck)
∣∣∣ < ε

2
, i = 1, 2.

Then

h(

∫
T
fdµ, [

∫
T
fdm1,

∫
T
fdm2]) ≤

≤ h(

∫
T
fdµ,

l∑
k=1

f(sk)µ(Ck))

+ h(

l∑
k=1

f(sk)µ(Ck), [

∫
T
fdm1,

∫
T
fdm2]) =

= h(

∫
T
fdµ,

l∑
k=1

f(sk)µ(Ck))

+ max

{∣∣∣ ∫
T
fdm1 −

l∑
k=1

f(sk)m1(Ck)
∣∣∣,

∣∣∣ ∫
T
fdm2 −

l∑
k=1

f(sk)m2(Ck)
∣∣∣} < ε,

for every ε > 0 and this implies
∫
T fdµ =

[
∫
T fdm1,

∫
T fdm2]. �

Taking m1 = 0 in Proposition 33, we obtain the
following result.

Corollary 34 Let m : A → R+ be a set function of
finite variation with m(∅) = 0, µ : C → Pkc(R) the
set multifunction defined by µ(A) = [0,m(A)], for
every A ∈ C and f : T → R. Then f is µ-integrable
on T if and only if f is m-integrable on T and, in this
case, ∫

T
fdµ = [0,

∫
T
fdm].

Theorem 35 Let µ : A → Pkc(X) be a semi-convex
multimeasure and f : T → R a µ̃-totally-measurable
bounded function on T . Then M defined in (∗∗) is
also semi-convex.

Proof. The following statements, even they are estab-
lished for T, remain valid for any arbitrary set A ∈ A.
Also, according to [28], f is µ-integrable on T and
on every A ∈ A. Consider arbitrary ε > 0 and let
M = max{µ(T ), sup

t∈T
|f(t)|}.

By the µ-integrability of f on T , there is a par-
tition {Ai}i=1,n of T such that for every si ∈ Ai,

i = 1, n, we have h(
∫
T fdµ,

n∑
i=1

f(si)µ(Ai)) <
2ε
3 ,

so h(12
∫
T fdµ,

n∑
i=1

f(si)
1
2µ(Ai)) <

ε
3 .

Because µ is semi-convex, for ev-
ery i = 1, n, there is Bi ⊂ Ai so that
Bi ∈ A and µ(Bi) = 1

2µ(Ai), which implies

h(12
∫
T fdµ,

n∑
i=1

f(si)µ(Bi)) <
ε
3 .

Since f is µ-integrable on B =
n∪

i=1
Bi, there ex-

ists a partition P̃B
ε = {Dk}k=1,s ∈ PB so that for

every partition P ∈ PB , with P ≥ P̃B
ε , we have

h(
∫
B fdµ, σ(P )) <

ε
3 .

On the other hand, because f is µ̃-totally-

measurable on B, there is a partition ˜̃
P

B

ε =
{El}l=0,m ∈ PB such that µ(E0) < ε

12M and
sup
t,s∈El

|f(t)− f(s)| < ε
6M , for every l = 1,m.

Consider {Dk∩El}k=1,s, l=0,m ∈ PB and denote
it by {Cj}j=1,q. For instance, C1 = D1 ∩ E0, C2 =
D2∩E0, ..., Cs = Ds∩E0, Cs+1 = D1∩E1 etc. We
observe that

µ(
s
∪
j=1

Cj) = µ(E0) <
ε

12M
and

sup
tj ,sj∈Cj

|f(tj)− f(sj)| <
ε

6M
, for every j = s+ 1, q.

Let PB
ε = {Bi ∩ Cj}i=1,n, j=1,q ∈ PB. Since

PB
ε ≥ P̃B

ε , then h(
∫
B fdµ, σ(P

B
ε )) < ε

3 .
Now, we have:

h(
1

2

∫
T
fdµ,

∫
B
fdµ) ≤ h(

1

2

∫
T
fdµ,

n∑
i=1

f(si)µ(Bi))

+ h(

∫
B
fdµ, σ(PB

ε ))+

+ h(σ(PB
ε ),

n∑
i=1

f(si)µ(Bi)) <
2ε

3

+ h(σ(PB
ε ),

n∑
i=1

f(si)µ(Bi)).

It only remains to prove that for every θij ∈ Bi ∩
Cj , i = 1, n, j = 1, q,

h(σ(PB
ε ),

n∑
i=1

f(si)µ(Bi))

= h(

n∑
i=1

q∑
j=1

f(θij)µ(Bi ∩ Cj),

n∑
i=1

f(si)µ(Bi)) <
ε

3
.
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Indeed, we have:

h(

n∑
i=1

q∑
j=1

f(θij)µ(Bi ∩ Cj),

n∑
i=1

f(si)µ(Bi)) =

= h(
n∑

i=1

q∑
j=1

f(θij)µ(Bi ∩ Cj),

n∑
i=1

q∑
j=1

f(si)µ(Bi ∩ Cj)) ≤

≤
n∑

i=1

q∑
j=1

|f(si)− f(θij)| · |µ(Bi ∩ Cj)| =

=

n∑
i=1

s∑
j=1

|f(si)− f(θij)| · |µ(Bi ∩ Cj)|+

+

n∑
i=1

q∑
j=s+1

|f(si)− f(θij)| · |µ(Bi ∩ Cj)| ≤

≤ 2M
s∑

j=1

µ(Cj) +

q∑
j=s+1

|f(si)− f(θij)| · µ(Cj) <

< 2Mµ(
s
∪
j=1

Cj) +
ε

6M
µ(

q
∪

j=s+1
Cj)

< 2M
ε

12M
+

ε

6M
M =

ε

3
.

Consequently, h(12
∫
T fdµ,

∫
B fdµ) < ε, for ev-

ery ε > 0, so 1
2

∫
T fdµ =

∫
B fdµ. Therefore, M is

semi-convex. �

Theorem 36 Suppose µ : A → Pf (X) is monotone,
null-additive and finitely purely atomic. If f is µ̃ -
totally-measurable on T , then f is µ -integrable on
T .

Proof. According to Theorem 31-II, it will be suffi-
cient to prove that f is µ-integrable on every atom A
of µ. First, we observe that, if A is an atom of µ and
if {Ai}i=1,n ∈ PA, then, there exists only one set, for
instance, without any loss of generality, A1, so that
µ(A1) ! {0} and µ(A2) = ... = µ(An) = {0}.

Let A ∈ A be an atom of µ.
Since f is µ̃-totally-measurable onA, then for ev-

ery ε > 0 there exists a partition Pε = {Ai}i=0,n of
A such that:

(∗)


i) µ̃(A0) <

ε
2M (where M = sup

t∈T
|f(t)|) and

ii) sup
t,s∈Ai

|f(t)− f(s)| < ε
µ(T ) , for every i = 1, n.

Let {Bj}j=1,k, {Cp}p=1,s ∈ PA be two arbitrary
partitions which are finer than Pε and consider sj ∈
Bj , j = 1, k, θp ∈ Cp, p = 1, s.

We prove that

h(•
k∑

j=1

f(sj)µ(Bj),
•

s∑
p=1

f(θp)µ(Cp)) < ε.

We have two cases:
I. µ(A0) ! {0}. Then µ(A1) = ... = µ(An) =

{0}.
Suppose, without any loss of generality that

µ(B1) ! {0}, µ(C1) ! {0} and µ(B2) = ... =
µ(Bk) = {0}, µ(C2) = ... = µ(Cs) = {0}. Then
B1 ⊂ A0 and C1 ⊂ A0. Consequently,

h(•
k∑

j=1

f(sj)µ(Bj),
•

s∑
p=1

f(θp)µ(Cp))

= h(f(s1)µ(B1), f(θ1)µ(C1)) ≤
≤ |f(s1)||µ(B1)|+ |f(θ1)||µ(C1)| ≤
≤ 2Mµ(A0) < ε.

II. µ(A0) = {0}. Then, without any loss of gen-
erality, µ(A1) ! {0} and µ(Ai) = {0}, for every
i = 2, n. Suppose that µ(B1) ! {0}, µ(C1) ! {0}
and µ(B2) = ... = µ(Bk) = {0}, µ(C2) = ... =
µ(Cs) = {0}. Then B1 ⊂ A1 and C1 ⊂ A1, and,
therefore,

h(•
k∑

j=1

f(sj)µ(Bj),
•

s∑
p=1

f(θp)µ(Cp))

= h(f(s1)µ(B1), f(θ1)µ(C1)).

Since A is an atom of µ and µ(B1) ! {0}, then
µ(A\B1) = {0}, so µ(C1\B1) = {0}. By the null-
additivity of µ, we get µ(C1) = µ(B1). Then

h(•
k∑

j=1

f(sj)µ(Bj),
•

s∑
p=1

f(θp)µ(Cp))

= h(f(s1)µ(B1), f(θ1)µ(C1))

= h(f(s1)µ(B1), f(θ1)µ(B1)).

By Proposition 1, we have

h(•
k∑

j=1

f(sj)µ(Bj),
•

s∑
p=1

f(θp)µ(Cp))

≤ |µ(B1)||f(s1)− f(θ1)| ≤ µ(T )
ε

µ(T )
= ε.

Therefore, the net (σ(P ))P∈PA
is a Cauchy one in

the complete metric space (Pbf (X), h), hence f is µ-
integrable on A. �

In [8, 9], submeasures of the following type are
studied. Here, we investigate the relationship between
their Gould integrals.
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Theorem 37 Let (mn)n∈N be an uniformly bound-
ed sequence of submeasures of finite variation, mn :
A → R+, ∀n ∈ N and m : A → R+ defined by
m(A) = sup

n
mn(A), for every A ∈ A.

Suppose A0 ∈ A is an atom of m and f : T →
R is m̃-totally-measurable on T . Then

∫
A0
fdm =

sup
n

∫
A0
fdmn.

Proof. By Example 3-II), m is a submeasure too. S-
incemn(A)≤ m(A), for everyA ∈ A, then for every
n ∈ N, f is m̃n-totally-measurable on T . According
to [17], f ism-integrable andmn-integrable on T and
on every A ∈ A. By [17],

∫
A0
fdmn ≤

∫
A0
fdm, for

every n ∈ N.
Since m(A0) = sup

n
mn(A0), we get that for ev-

ery ε > 0, there is n0(ε,A0) = n0 so that m(A0) <
mn0(A0) +

ε
2M , where M = sup

t∈T
|f(t)|.

Because f is m-integrable and mn0-integrable on
A0, we have that for every ε > 0, there is a common
partition {Bj}j=1,k ∈ PA0 so that for every tj ∈ Bj ,

|
∫
A0
fdm−

k∑
j=1

f(tj)m(Bj)| < ε
4 and |

∫
A0
fdmn0−

k∑
j=1

f(tj)mn0(Bj)| < ε
4 .

Since {Bj}j=1,k ∈ PA0 , we observe that there
can exist only one set, for instance, B1, so that
m(B1) > 0 and m(Bj) = 0, for every j = 2, k.
Then mn0(Bj) = 0, for every j = 2, k.

Consequently, because m(B1) = m(A0) and
mn0(B1) = mn0(A0), we have∫

A0

fdm ≤
∣∣∣ ∫

A0

fdm−
k∑

j=1

f(tj)m(Bj)
∣∣∣

+
∣∣∣ ∫

A0

fdmn0 −
k∑

j=1

f(tj)mn0(Bj)
∣∣∣

+ |f(t1)| · |m(B1)−mn0(B1)|

+

∫
A0

fdmn0 <
ε

2
+M

ε

2M
+

∫
A0

fdmn0 =

= ε+

∫
A0

fdmn0 ,

so
∫
A0
fdm = sup

n

∫
A0
fdmn, as claimed. �

6 Classical results for the Gould type
set-valued integral

In this section we obtain some classical theorem-
s (such as Hölder inequality, Minkowski inequality,

mean convergence theorem, Lebesgue theorem, Fatou
lemma) for the Gould type set-valued integral intro-
duced in [30].

Theorem 38 (Hölder Inequality) Let m : A → R+

be a submeasure of finite variation and f, g : T → R
m -integrable bounded functions on T . Then∫

T
|fg|dm ≤

(∫
T
|f |pdm

) 1
p

·
(∫

T
|g|qdm

) 1
q

,

for every p, q ∈ (1,∞), with 1
p + 1

q = 1.

Proof. Since (see [17]) for submeasures, m-
integrability is equivalent to m̃-totally-measurability,
then by Theorem 19-I and Theorem 2.17 [17], |f |, |g|,
|fg|, |f |p and |g|q are alsom-integrable, so, for every
ε > 0, there is a common partition Pε = {Ai}i=1.n
such that for every ti ∈ Ai, i = 1, n, we have:∣∣∣ ∫

T
|fg|dm−

n∑
i=1

|f(ti)g(ti)|m(Ai)
∣∣∣ < ε

3
,

∣∣∣ ∫
T
|f |dm−

n∑
i=1

|f(ti)|m(Ai)
∣∣∣ < ε

3
and

∣∣∣ ∫
T
|g|dm−

n∑
i=1

|g(ti)|m(Ai)
∣∣∣ < ε

3
.

Since
n∑

i=1

|f(ti)g(ti)|m(Ai)

=

n∑
i=1

[
|f(ti)| (m(Ai))

1
p · |g(ti)| (m(Ai))

1
q

]
≤

≤

(
n∑

i=1

|f(ti)|pm(Ai)

) 1
p

·

(
n∑

i=1

|g(ti)|qm(Ai)

) 1
q

,

we immediately have the conclusion. �
Using the above theorem, we obtain the

Minkowski inequality, by a classical proof.

Theorem 39 (Minkowski inequality) Let m : A →
R+ be a submeasure of finite variation and f, g : T →
Rm -integrable bounded functions on T . Then(∫

T
|f + g|pdm

) 1
p

≤
(∫

T
|f |pdm

) 1
p

+

(∫
T
|g|pdm

) 1
p

,

for every p ∈ [1,+∞).
If m : A → R+ is a submeasure of finite varia-

tion, we consider the space Lp = {f : T → R; f is
bounded on T and |f |p is m-integrable on T}.
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Remark 40 From Theorem 19-II, it results that if
f, g ∈ Lp, then f + g ∈ Lp. So, Lp is a linear s-
pace.

Corollary 41 Let m : A → R+be a submeasure of
finite variation and p ∈ [1,+∞). Then the function
|| · || : Lp → R+, defined for every f ∈ Lp by ||f || =
(
∫
T |f |pdm)

1
p , is a semi-norm.

Definition 42 Let µ : A → Pf (X) be a set mul-
tifunction with µ(∅) = {0}. If for every n ∈ N,
fn : T → R is µ-integrable on T , then the se-
quence (fn) is said to be mean convergent to f on
T if lim

n→∞

∫
T (fn − f)dµ = {0} (with respect to h).

Theorem 43 (Mean Convergence Theorem) Let µ :
A → Pkc(X) be a set multifunction of finite vari-
ation, with µ(∅) = {0} and fn : T → R, for ev-
ery n ∈ N. Suppose (fn) is an uniformly bound-
ed sequence of µ-integrable functions such that (fn)
is convergent in submeasure to a bounded function
f : T → R. Then f is µ-integrable on T and on
every A ∈ A,

lim
n→∞

∫
A
(fn − f)dµ = {0}

(with respect to h)

Proof. Let M ′ = µ(T ), M1 = sup
t∈T

|f(t)|, M2 =

sup
t∈T,n∈N

|fn(t)| and M = max{M1,M2}.

Since fn
µ̃−→ f , it results that for every ε > 0,

there exists n0(ε) ∈ N so that µ̃(Bn

(
ε

6M ′

)
) < ε

4M ,
for every n ≥ n0.

Particularly, µ̃(Bn0

(
ε

6M ′

)
) < ε

4M . By the defini-
tion of µ̃, there is Cn0 ∈ A so that Bn0(

ε
6M ′ ) ⊆ Cn0

and µ̃(Cn0) = µ(Cn0) <
ε

4M .
First, we prove that f is µ-integrable on Cn0 . In-

deed, for every ε > 0, there is a partition Pε =
{Cn0} ∈ PCn0

so that, for every other partition
P = {Dl}l=1,p ∈ PCn0

, with P ≥ Pε and every
tl ∈ Dl, l = 1, p and c ∈ Cn0 , we have:

h

(
p∑

l=1

f(tl)µ(Dl), f(c)µ(Cn0)

)

≤
p∑

l=1

|f(t)| · |µ(Dl)|+

+
ε

4M
·M1 < µ(Cn0) ·M1 +

ε

4M
·M1

< 2 · ε

4M
·M1 =

ε

2
.

Consider another partition P ′ = {Es}s=1,q ∈ PCn0
,

with P ′ ≥ Pε and rs ∈ Es, s = 1, q, arbitrarily.
In a similar way we get

h

(
q∑

s=1
f(rs)µ(Es), f(c)µ(Cn0)

)
< ε

2 , whence,

h

(
p∑

l=1

f(tl)µ(Dl),
q∑

s=1
f(rs)µ(Es)

)
< ε. Then f is

µ-integrable on Cn0 .
Consequently, according to Theorem 31-II, in or-

der to prove that f is µ-integrable on T , it is sufficient
to establish the µ-integrability of f on T\Cn0 .

Since for every n ∈ N fn is µ-integrable on T ,
then fn0 is µ-integrable on T\Cn0 . Consequently,
there is a partition Pn0

ε = {Ai}i=1,mn0
∈ PT\Cn0

so that, for every other partition P ∈ PT\Cn0
, with

P ≥ Pn0
ε , we have h(σ(P ), σ(Pn0

ε )) < ε
3 .

Let P = {Dj}j=1,l ∈ PT\Cn0
, with P ≥ Pn0

ε be
arbitrarily, but fixed. For every tj ∈ Dj , j = 1, l and
every ci ∈ Ai, i = 1,mn0 , we have:

h(

l∑
j=1

f(tj)µ(Dj),

mn0∑
i=1

f(ci)µ(Ai))

≤ h

 l∑
j=1

f(tj)µ(Dj),
l∑

j=1

fn0(tj)µ(Dj)

+

+ h

 l∑
j=1

fn0(tj)µ(Dj),

mn0∑
i=1

fn0(ci)µ(Ai)

+

+ h

(mn0∑
i=1

fn0(ci)µ(Ai),

mn0∑
i=1

f(ci)µ(Ai)

)
≤

≤ µ(T\Cn0) · sup
t∈cBn0

|f(t)− fn0(t)|

+
ε

3
+ µ(T\Cn0) · sup

t∈cBn0

|f(t)− fn0(t)| <

< M ′ · ε

6M ′ +
ε

3
+M ′ · ε

6M ′ = ε.

A similar inequality for every other partition P ′ ∈
PT\Cn0

, with P ′ ≥ Pn0
ε , may analogously be ob-

tained. Then, by the triangular inequality, f is µ-
integrable on T\Cn0 and, according to Theorem 4.5-
II, f is µ-integrable on T .

Now, we prove that lim
n→∞

∫
T (fn − f)dµ = {0}

with respect to h. According to Theorem 31-III, there
exist

∫
A fdµ and

∫
A fndµ, for every n ∈ N and every

A ∈ A.
We shall use the same Bn

(
ε

6M ′

)
, with n ≥ n0,

as before. By the definition of µ̃, we get that for every
n ≥ n0, there exists Cn ∈ A so that Bn(

ε
6M ′ ) ⊆ Cn

and µ̃(Cn) = µ(Cn) <
ε

4M .
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Then, for every n ≥ n0, we have:∣∣∣ ∫
A
(fn − f)dµ

∣∣∣ = ∣∣∣ ∫
A\Cn

(fn − f)dµ

+

∫
A∩Cn

(fn − f)dµ
∣∣∣≤

≤ sup
t∈A\Cn

|fn(t)− f(t)| · µ(A\Cn)

+ sup
t∈A∩Cn

|fn(t)− f(t)| · µ(A ∩ Cn) <

<
ε

6M ′ ·M
′

+ 2M · µ(Cn) <
ε

2
+ 2M · ε

4M
= ε,

so lim
n→∞

∫
A(fn − f)dµ = {0} (with respect to h), for

every A ∈ A. �

Theorem 44 (Lebesgue type Theorem) Let µ : A →
Pkc(X) be a set multifunction of finite variation, with
µ(∅) = {0} and fn : T → R, for every n ∈ N.
Suppose (fn)n is an uniformly bounded sequence of
µ-integrable functions such that (fn)n is convergent
in submeasure to a bounded function f : T → R.
Then, f is µ -integrable on every A ∈ A and

lim
n→∞

∫
A
fndµ =

∫
A
fdµ (with respect to h).

Proof. By the proof of Theorem 43, it results that f is
µ-integrable on every A ∈ A. Using the same sets as
before, we have for every n ≥ n0 and every A ∈ A:

h(

∫
A
fndµ,

∫
A
fdµ)

= h(

∫
A\Cn

fndµ+

∫
A∩Cn

fndµ,

∫
A\Cn

fdµ

+

∫
A∩Cn

fdµ)≤h(
∫
A\Cn

fndµ,

∫
A\Cn

fdµ)

+ h(

∫
A∩Cn

fndµ,

∫
A∩Cn

fdµ) ≤

≤ sup
t∈A\Cn

|fn(t)− f(t)| · µ(A\Cn)

+ sup
t∈A∩Cn

|fn(t)− f(t)| · µ(A ∩ Cn) <
ε

6M ′ ·M
′

+ 2M · µ(Cn) <
ε

2
+ 2M · ε

4M
= ε,

and the conclusion follows. �

Theorem 45 (Fatou Lemma) Suppose A is a σ-
algebra, µ : A → R+ is a submeasure of finite
variation so that µ̃ is o-continuous and(fn)n∈N is a

sequence of uniformly bounded, µ̃-totally-measurable
functions fn : T → R. Then∫

T
lim inf

n
fndµ ≤ lim inf

n

∫
T
fndµ.

Proof. For every n ∈ N, consider gn defined for every
t ∈ T by gn(t) = inf

k≥n
fk(t). Let also be f : T → R,

f(t) = lim
n→∞

gn(t), for every t ∈ T. We observe that

gn
ae→ f and gn ≤ fn, for every n ∈ N.
According to Theorem 24, (gn)n is also a se-

quence of uniformly bounded, µ̃-totally-measurable
functions, so, by Corollary 25, f is µ̃-totally-
measurable on T .

By [17], fn and f are µ-integrable on T , for every
n ∈ N.

Since gn
ae→ f and µ̃ is an o-continuous submea-

sure on P(T ), then, according to Li [23], gn
µ̃→ f , so,

by [13],∫
T
lim inf

n
fndµ =

∫
T
fdµ = lim

n→∞

∫
T
gndµ.

Consequently,∫
T
lim inf

n
fndµ = lim inf

n

∫
T
gndµ

≤ lim inf
n

∫
T
fndµ.

This completes the proof. �
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[12] A. Gavriluţ, A Gould type integral with respec-
t to a multisubmeasure, Math. Slovaca, vol.58,
(2008), No. 1, pp. 1-20.
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An. Şt. Univ. Iaşi, vol. 52, (2006), no 1, pp. 177-
194.
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