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Abstract: In this paper, we continue the study of the Gould type integral introduced in [30] which generalizes the
results of [12, 13, 17, 28] and [29]. We obtain various classical properties, such as a mean type theorem, a Lebesgue
(Fatou respectively) type theorem, Holder and Minkowski inequalities etc. Other results concerning measurability,
semi-convexity, diffusion and atoms are also established.
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1 Introduction

In [20] G. G. Gould introduced an integral for bound-
ed real functions with respect to finitely additive set
functions taking values in a Banach space, integral
which is more general that the Lebesgue one.

In the last years, the non-additive case and the
set-valued case received a special attention because
of their applications in mathematical economics, deci-
sion theory, artificial intelligence, statistics or theory
of games.

A. Precupanu and A. Croitoru generalized
Gould’s results [20], studying in [28] a Gould type in-
tegral for multimeasures with values in Pj.(X), the
family of all compact convex nonempty subsets of
a real Banach space X. Also, Gould type integrals
with respect to a (multi)submeasure were studied in
[12]-[19]. In [30], A. Precupanu, A. Gavrilut and A.
Croitoru introduced and studied a Gould type integral
for bounded real functions with respect to a set multi-
function of finite variation with values in Py (X), the
family of all bounded closed nonempty subsets of a
real Banach space X.

On the other hand, notions as atoms, pseudo-
atoms, Darboux property, non-atomicity (with differ-
ent nonequivalent variants - see, for instance, [8, 9]),
(finitely) purely atomicity, semi-convexity, diffusion
were intensively studied in recent years, due to their
applications in many classical measure theory prob-
lems, physics and convex analysis (see [1, 3, 4, 5, 6,
8,9,10, 11, 21, 23, 24, 25, 26]).

That is why, in this paper, we study these no-
tions for the Gould type integral introduced in [30].
We prove that the Lebesgue theorem, Holder and
Minkowski inequalities, Fatou lemma have here a cor-
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respondent and our integral preserves properties like
semi-convexity or diffusion. Results regarding mea-
surability are also established.

2 Basic notions

Let (X, || - ||) be a real normed space, Py (X ) the fam-
ily of all nonvoid subsets of X, P;(X) the family of
all nonvoid bounded subsets of X, P¢(X) the family
of all nonvoid closed subsets of X, P (X ) the family
of all nonvoid closed bounded subsets of X, Py r.(X)
the family of all nonvoid closed bounded convex sub-
sets of X, Pr.(X) the family of all nonvoid compact
convex subsets of X and & the Hausdorff pseudomet-
ric on Py (X), which becomes a metric on Py (X).

It is known that h(M,N) =
max{e(M,N),e(N,M)}, where e(M,N) =
supd(x, V), for every M, N € P;(X) is the excess
zeM
of M over N and d(z, N) is the distance from x to N
with respect to the distance induced by the norm of
X.

We denote |M| = h(M,{0}) = sup ||z||, for
zeM
every M € Py(X), where 0 is the origin of X.

For every M, N € Py(X) and every o € R, let
M+ N ={z+ylr € M,y € N} and aM =
{ax|x € M}. We denote by M the closure of M
with respect to the topology induced by the norm of
X

On Py(X) we consider the Minkowski addition
» 17 [18], defined by:

M—T—N:M—i-N, for every M, N € Py(X).
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Let 7" be an abstract nonvoid set, P(7") the family
of all subsets of 7" and C a ring of subsets of 7.

Byi=1,nwemeani € {1,2,...,n}, forn €
N*, where N is the set of all naturals and N* = N\ {0}.
We also denote R = [0, +00) and Ry = [0, +o0].

Some properties of h are presented in the fol-
lowing proposition (see Hu and Papageorgiu [22],
Petrugel and Mot [27]).

Proposition 1 Let A, B,C, D, A,,, B,, € Pyo(X), for
every n € N*, Then:

D) (a+ B)A = aA + BA, forevery a, B € Ry
and convex A.

mATB+C=A%1(B

my (A+B)+(C 1 D)=
IV) h(A, B) = h(A, B).
V) e(A, B) = 0 ifand only if A C B.
VI) h(A, B) = 0 ifand only if A = B.
VII) h(aA,aB) = |alh(A, B), for all o € R.
Vi) h(Z?zl Ai, Z?:l B;) < Z?=1 h(Ai, B;).
IX) h(aA, BA) < | — B| - |A|, forall o, B € R.
X) h(aA+BB,yA+0B) < |a—~|-|A[+]|8 -
|B|, for all o, 3,7, € R.
XI) h(A+C, B+C) = h(A, B), forevery A, B €
Pyre(X) and C € Py(X).

XI) If A, A, € Pp(X) and o, oy, € R, for every
n € N*, are so that h(A,, A) — 0 and o,, — «, then
h(anAp, aA) — 0.

).

H
Ato)t (B D).

C
:

J] -

‘We now recall some classical notions:
Definition 2 A set function m : C — R.b with
m(0) = 0, is said to be:

I) monotone if m(A) < m(B), for every A,B €
C, with A C B.

Il) superadditive if m(J A:;) > > m(A4;), for

= iel
every sequence of pairwise disjoint sets (A;);er C C,
with |J A, € C, T CN.
el

1) subadditive if m(A U B) < m(A) + m(B),
forevery A, B € C, with AN B = (.

1V) a submeasure (in Drewnowski’s sense [7]) if
m is monotone and subadditive.

Example 3 1) If v : C — R is a finitely additive set
function, then m : C — [0, 1] defined for every A € C
by m(A) = 11511?1)4) is a submeasure.

1) ([8,9]) Let my, : C — Ry be a submeasure
for every n. € N. Then the set function m : C — R4
defined by m(A) = supm,(A), forevery A €C, isa

n

submeasure, too.
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Remark 4 Suppose m : C — R is a submeasure of
finite variation. If m denotes the variation of m on
P(T), then:

I) m is finitely additive on C.

1) The following statements are equivalent:
i) m is o-continuous,

it) m is o-subadditive;

iii) m is o-additive on C;

iv) m is o-continuous on C.

Definition 5 For a set multifunction i : C — Py(X),
with (D) = {0}, we consider:

1) the extended real valued set function || defined
by |ul(A) = |u(A)l, for every A € C.

Il) the variation i of p defined by (A)

n

sup{>_ |u(4;)|}, for every A € P(T), where the
suprezmlum is extended over all finite families of pair-
wise disjoint sets {A;} C A, with A; C A, for
everyi € {1,...,n}.

w is said to be of finite variation on C if i( A) <
00, for every A € C.

i=1n

Definition 6 Let p : C — Po(X) be a set multifunc-
tion, with u(0) = {0}. w is said to be

I) monotone if u(A) C u(B), forevery A, B € C,
with A C B.

1) a multimeasure if (AU B) = u(A) + u(B),
forevery A, B € C, with AN B = ().

111) a multisubmeasure if | is monotone and

(AU B) C pu(A) + u(B), for every A,B € C,
with ANB =)

(or, equivalently, for every A, B € C).

IV)  h-o-subadditive if |u(J An)| <
n=1

18

|1(Ay)|, for every sequence of pairwise dis-

n=1

o0
Jjoint sets (Ay)nen C C, with |J Ay € C.
n=1

V) null-additive if n(A U B) = u(A), for every
A, B € C, with u(B) = {0}.

VI) null-null-additive if n(A U B) = {0}, for ev-
ery A, B € C, with u(A) = u(B) = {0}.

VII) order-continuous (shortly, o-continuous) if
nIL%h(M(A")’ w(A)) = 0, for every decreasing se-

quence of sets (Ap)nen+ C C, with () A, = 0 (de-
n=1
noted by Ay, \, ).

VIII) increasing convergent if
lim h(u(Ay),u(A)) = 0, for every increasing se-
n—oo
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quence of sets (Ap)nen+ C C, with |J A, =A€eC
n=1
(denoted by A,, /' A).

Remark 7 If p is Py(X)-valued, then in Definition
6-11), 111) it usually appears the Minkowski addition
instead of the classical addition because the sum of
two closed sets is not, generally, a closed set.

Remark 8 . [) iz is monotone and superadditive on
P(T). Also (see [12]), if - C — Pp(X) is a mul-
ti(sub)measure, then Ti is finitely additive on C and ||
is a submeasure.

1I) Every monotone multimeasure is, particular-
ly, a multisubmeasure. Also, any multisubmeasure is
null-additive. Any null-additive set multifunction is
null-null-additive. The converses are not valid.

) Let yi : A — Py(X) be a multisubmeasure of
finite variation. The following statements are equiva-
lent:

i) p is h-o-subadditive;

ii) w is order-continuous,

iii) [ is o-additive on C.

3 Semi-convexity, Darboux property,
diffusion and atoms of set multi-
functions

We present some properties regarding semi-convexity,
Darboux property, diffusion and atoms for set multi-
functions. These properties will be discussed in sec-
tion 5 in relation with the Gould type set-valued inte-
gral.

The following notions are classical in measure
theory, but they are extended to the set valued case
(see for instance [2, 3, 4, 15, 16]).

Definition 9 Let j1 : C — Po(X) be a set multifunc-
tion, with ;(0) = {0}.

I) We say that i

i) is semi-convex if for every A € C, with j1(A) 2
{0} , there is a set B € C such that B C A and
u(B) = § n(4).

ii) has the Darboux property if for every A € C,
with 1(A) 2 {0} and every p € (0, 1), there exists a
set B € C such that B C A and u(B) = p u(A).

iii) is diffused if for every t € T, with {t} € C, we
have p({t}) = {0}.

II) A set A € C is said to be an atom of pu if
w(A) 2 {0} and for every B € C, with B C A, we

have u(B) = {0} or p(A\B) = {0}.
111) We say that p is
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i) finitely purely atomic if there is a finite disjoint
family (A;),_15,; C C of atoms of j so that T' = 'GlAi'
) 1=

ii) purely atomic if there is at most a countable
number of atoms (Ay,), C C of p so that p(T'\ ijol
n—=

A,) = {0} (evidently, here C must be a o-algebra).
iii) non-atomic if it has no atoms.

IV) We say that v : C — Prc(R) is induced by a
set functionm : C — Ry, withm(0) = 0, if u(A) =
[0, m(A)], for every A € C.

Remark 10 [) The Lebesgue measure i is diffused.
Also, the set functions my, mg : C — R defined for
every A € C by mi(A) w(A) and ma(A)

1(A) .
Tru(A) 4re diffused submeasures. The same are the

multisubmeasures induced by them.

I If pi,pe = C — Po(X) are diffused multi-
measures, then the same is the multimeasure [ + o

defined by (pi1 + p2)(A) = p1(A) + pa(A), for every
AeC.

ol) Let jn : C — Po(X) be a set multifunction,
with u(0) = {0}. Then the following statements are
equivalent:

a) p is diffused;

b) |p| is diffused;

¢) 1 is diffused on C.

The following result is obviously true.

Proposition 11 If the set multifunction p : C —
Po(X), with u(0) = {0}, has the Darboux proper-
ty, then it is semi-convex.

Under some assumptions, the converse of Propo-
sition 11 is also valid, as shown below:

Theorem 12 Let C be a o-ring and p C —
Pyte(X) a monotone increasing convergent multi-
measure. Then i has the Darboux property if and only
if 1 is semi-convex.

Proof. The “only if” part results from Proposition 11.
The ”if” part. Every p € (0,1) has an expansion

o0
p= ) 9%, wherea, € {0,1}, for every n € N*. Let

n=1
A € C,sothat u(A) 2 {0} andletp € (0,1).

By the semi-convexity of u, there is B; € C so
that By C A and pu(B1) = G u(A).

Analogously, there is Bo € C so that By C
A\B; and pu(Bs) 531(A) and so on. Consid-

o0 oo n
er B UB, = U(UBg) € C. We have
n=1 n=1"k=1
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p(B) = Jim 3% p(Bi) = Jim 3 g u(4) (with

respect to h). B}7 Proposition 1-1 and XII, it follows
w(B) = pu(A), as claimed. O

Remark 13 I) If i is monotone, then y is non-atomic
if and only if for every A € C, with u(A) 2 {0},
there exists B € C, with B C A, u(B) 2 {0} and
u(A\B) 2 {0}).

Il) Let v : C — Ry be a set function, with v(()) =
0 and p the set multifunction induced by v. Then p has
the Darboux property if and only if v has it.

IIl) [15] Suppose T is a locally compact Haus-
dorff space, B is the Borel 0-ring generated by the
compact subsets of T and 1 : B — Py(X) is a mul-
tisubmeasure. Then . is non-atomic if and only if it is
diffused.

4 [-totally-measurability

In this section we present some properties of ji-
totally-measurable functions. In the sequel, A is an
algebra of subsets of T, 1 : A — Pp(X) is a set
multifunction so that u(()) = {0} and f : T — R an
arbitrary function.

Definition 14 1) A partition of a set A € A is a finite
family P = {A;},_15 of pairwise disjoint sets of A

n
such that | ) A; = A.

=1

We denote by P the class of all partitions of T and
if A € Ais fixed, by Pa, the class of all partitions of
A.

1I) For a set multifunction yu : A — Po(X),
we consider the extended real valued set function
i defined by p(A) inf{u(B);A C B,B €
A}, forevery A € P(T).

Remark 15 1) i(A) = u(A), for every A € A 1
is monotone and if T is subadditive, then 1 is also
subadditive.

1) Suppose = A — Pr(X) is a multisubmea-
sure of finite variation. Then:

i) 1 is a submeasure.

ii) If, moreover, y is h-o-subadditive, then 1 is
o-subadditive.

Definition 16 1) f is said to be [i-totally-measurable
on (T, A, 1) if for every € > 0 there exists a partition
P. ={Ai};_g5; of T such that:

a) (Ao) < e and
b) sup [f(t) — f(s)| = osc(f, Ai) <e,
t,s€A;
forevery i =1,n.

(%)
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II) f is said to be pi-totally-measurable on B € A
if the restriction f|p of f to B is p-totally measurable
on (B, Ap,up), where Ap = {ANB;A € A} and

UB = | Ag-

One can easily observe that if f is p-totally-
measurable on 7, then f is p-totally-measurable on
every A € A.

Definition 17 We say that a property (P) holds p-
almost everywhere (shortly, u-ae) if there is A €
P(T), with i(A) = 0, so that the property (P) is
valid on T\ A.

Definition 18 Ler f,, : T — R be a real function for
every n € N. One says that the sequence ( fy,)
1) converges in submeasure to [ (denoted by

fn =25 f) if for every 6 > 0, li_>m w(Br(6)) =0,
where

Bn(6) ={t € T; | fu(t) — f(t)| = 6}.

II) converges almost everywhere to f (denoted by

fn L5 f) ifthere is A € P(T) so that ji(A) = 0 and
(fn) pointwise converges to f on T\ A.

IIl) (Li [23, 24]) is almost uniformly convergent
on T (with respect to fi), denoted by f, — f, if
there exists (Ax)gens C A, with klim n(Ag) = 0,

—00

such that f, converges to f on T\ Ay uniformly for
any fixed k € N*.

From now on, u is supposed to be of finite varia-
tion.

Theorem 19 Let 11 : A — Pr(X) be a multisubmea-
sure.

D((11])If f,g : T — R are bounded ji-totally-
measurable functions, then:

i) f + g is p-totally-measurable;

ii) \f is p—totally-measurable, for every A € R;

iii) f? and fg are fi-totally-measurable;

v) |fIP is p-totally-measurable, for every p €
[1, +00);

v) If infier f(2)
measurable.

II) Suppose f,g : T — R are bounded func-
tions. If |f|P and |g|P are pi-totally-measurable for
an arbitrary p € [1,+00), then |f + g|P is p-totally-
measurable.

I) ([13]) If for every n € N,f, : T — R is
bounded [i-totally-measurable and ( f,,) is convergent
in submeasure to a bounded function f : T — R, then
f is u-totally-measurable.

> 0, then is p-totally-

=
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Remark 20 If ¢ : R — R is Lipschitz, then @ o f is
p-totally-measurable.

Proposition 21 Ler p : A — P(X) be a (mul-
ti)(sub)measure, f : T — R a bounded function and
A,B € A with AN B = (). Then f is ji-totally-
measurable on A U B if and only if it is p-totally-
measurable on A and [i-totally-measurable on B.

Proof. The if part is straightforward. For the on-
ly if part, by the pu-totally-measurability of f on
A and B, there are P4 = {Ai}i—57 € Pa and
P5 = {Bj}i—og € Ps satisfying the condition
(). Since 7 is additive on A, then PAYE = {4, U
By, A1, ..., Ap, B, ...,By} € Paup also satisfies
condition (%), so f is pu-totally-measurable on A U
B. O

Remark 22 1) In the above proposition, A and B
need not to be disjoint. Indeed, if we take arbitrary
A,B € A, since AU B = (A\B) U B and ji-totally-
measurability is hereditary, the statement follows.

II) Under the assumptions of the above proposi-
tion, if {A;};,_15; C A, then f is i-totally-measurable

p
on _UlAi if and only if the same is f on every A;,i =
1=

1,p.

Proposition 23 If A is a o-algebra, ;i : A — Pp(X)
is an o-continuous (multi)(sub)measure, f : T — R
is a bounded function and (A,), C A are pair-
wise disjoint, then f is fi-totally-measurable on every

An,n € Nifand only if the same is f on A = EJ_OlAn.

Proof. The only if part immediately follows. The if
part: Since p is an o-continuous (multi)(sub)measure
of finite variation, then 1z is additive on A4, so i is also

n
o-continuous on 4. We observe that A\ Y Ak N\ 0,

so for every £ > 0, there is ng € N, with fi(A\ ;Lljol

Ag) < e.

Since for every I = 1,ng, f is p-
totally-measurable on A, let { Bl.}j —0p0
(B2} _og5r - {B;" Yo 7o be the corresponding
partitions satisfying ().

.. no

The partition P = {(A)\ kL:Jl Ap), {B}}jzm,

{32}j Tpgr {B;-)"O }j=m} € Py satisfies (x),

so f is pi-totally-measurable on A = oleAn. O
n=

Theorem 24 Suppose A is a o-algebra, p : A —
R is an o-continuous submeasure of finite variation
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and (fn)nen+ is a sequence of uniformly bounded ji-

totally-measurable functions f, : T — R. Then g

defined for every t € T by ¢(t) in1£ fn(t), is -
neN*

totally-measurable.

Proof. One can easily check that for every t,s € T,
the following inequality holds:

(D g(®) —g(s)] < sup[falt) -

neN*

fn ()]

Since for every n € N* f, is pu-totally-
measurable, then for every € > 0, there is a partition
P ={A}}, g5 € Psothat i(Af) < 557 and
(2)

6 .
sup |fn(t) — fu(s)| < ongi for every j =1,pn.
t,sGA;‘ 2
o0 .
Let Ay = UlA(} € A. Because p is an o-
n—=

continuous submeasure of finite variation, then, by
Remark 4-11, 1z is o-additive on A, so,

(o] o0
n € €
Fi(Ao) SZ A) <D g < 3
n=1 n=1
On the other hand,
c%:ﬁpﬁzﬁmmmmuugﬁz
n= n=

(AJUAZU..UAL )N (AJUASU..UAZ )N

U @inain..napn..),
(in)ellnzy In

where I, = {1, 2,.

the last reunion by U B,,. Now let C,, = U By, and
n=1 k=1
D,, = cAp\C,, for every n € N*. We observe that

[ee] oo
B, N By, = whenevern #m, |J C,, = |J B, =
n=1 n=1

cAg and D,, N\ 0.
Since 7z is o-continuous, there is ng(e) = ng €

N* such that ﬁ(cAo\(@lBi)) < 5. Because fi(A4p) <
1=

) pn}, for every n € N* Denote

gwgmmﬁ@»<s
1=
From (1) and (2), we have:

€
sup [g(t) — g(s)| = sup {sup |fu(t) = fu(s)l} < 3,
t,s€B; t,seB; neN*
Vié{l,...,ng}.
If we now consider the partition P. =
{C(@le%Bl,n-,Bno}, we obtain that g is -
1=

totally-measurable. g
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Corollary 25 Under the assumptions of Theorem 24,

the function h defined for every t € T by h(t)

sup f(t), is p-totally-measurable. Moreover, sup-

neN*

posing there exists h_)m fu(t) = f(t), for every t €
n oo

T, then f is p-totally-measurable.

Theorem 26 Suppose (T, p) is a compact metric s-
pace, B is the Borel §-ring generated by the compact
subsets of T, f : T — R is continuous on T and
p: B — Py(X) is a finitely purely atomic multisub-
measure. Then f is pi-totally-measurable on T.

Proof. According to Remark 22, it is sufficient to
establish the ji-totally-measurability of f on an ar-
bitrary, fixed atom Ay of p. Since p is a multisub-
measure, by [15], there is an unique ag € Ag so that
1(Ao\{ao}) = {0}.

Let ¢ > 0. Since f is continuous in ag, there is
de > 0 so that for every t € Ay, with p(t,ag) < O,
we have |f(t) — f(ao)| < §.

Let B. = {t € Ag;p(t,ag) < 6:} = Ap N
B(ay, d:), where B(ag, d.) is the open ball of center
ao and radius d.. It results B. € B and since Ay is an
atom, we have p(B;) = {0} or u(Ao\B:) = {0}.

If u(B:) = {0}, then since a9 € B., we get
n({ao}) = {0} But u(Ao\{ao}) = {0}, s0 u(Ao) =
{0}, a contradiction. So, we have u(Ap\B:) = {0}.
Now, one can easily observe that the partition P4,
{Ap\B:, B} assures the p-totally-measurability of
f. O

5 Semi-convexity, diffusion, atoms
and purely atomicity for a Gould
type set-valued integral

In this section, we establish results concerning semi-
convexity, diffusion, atoms and purely atomicity for
the Gould type set-valued integral introduced and s-
tudied in [30].

In what follows, without any special assumptions,
we suppose A is an algebra of subsets of 7', X is a
Banach space, 1 : A — Py(X) is a set multifunction
of finite variation, with u(0) = {0} and f : T — R
is a bounded function. We now recall the following
notions and results (see [12, 13, 28, 29]).

Remark 27 If p : A — P¢(X) is of finite variation,
then pu takes its values in Py (X).

Definition 28 /) Let P {Ai};_15; and P’
{Bj}j:m be two partitions of T. P’ is said to be
finer than P, denoted P < P’ (or P' > P) if for ev-
ery j = 1,m, there exists ij = 1,n so that B; C A; .
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1I) The common refinement of two partitions P =
{Ai}i:ﬁ and P' = {B;} is the partition P N\
P = {Az N BJ}

j=1m

i=1n"
j=1lm

Definition 29 (/30]) For every partition P
{Aiticiy of T and every t; € A; i
1,n, let o4,(P) (or, if there is no doubt,
o4(P), 0(P). o(P) be:

a(P) =")_ f(t:)u(As)
i=1

= FtE)pu(Ar) + -+ f(tn) u(An).-

I) f is said to be p-integrable on (T, A, p) if
the net (o(P))pe(p,<) is convergent in (Py(X),h),
where P is ordered by the relation ” < 7 given in
Definition 4.2.

If (0(P))pe(p,<) is convergent, then its limit is
called the integral of f on T with respect to i, denoted
by [ fdpu.

Il) For an arbitrary B € A, f is said to be -
integrable on B if the restriction f|p of f to B is -
integrable on (B, Ap, up).

Remark 30 1) f is p-integrable on T if and only if
there exists a set I € Py(X) such that for every e >
0, there exists a partition P. of T, so that for every
other partition of T, P = {4;} with P > P.
and every choice of points t; € A;,i = 1,n, we have
h(o(P),I) < e.

1) If p is a multimeasure (multisubmeasure, sub-
measure, monotone set multifunction, respectively),
we obtain the corresponding definitions of [28, 12, 17,
29], respectively).

II) If u is a multimeasure and f = 1, then
fT fdp = N(T)'

V) If 2 A= Pre(X), then [ fdu € Pre(X).

V) Suppose m : A — Ry is an arbitrary set
function of finite variation with m(()) = 0 and con-
sider the set multifunction p : A — Pr(R) defined by
w(A) = {m(A)}, forevery A € A. Then, by ), f is
m-integrable on T' if and only if there is I € R such
that for every € > 0, there exists a partition P; of T,
so that for every other partition of T, P = {A;},_17,
with P > P. and every choice of points t; € Ap i =

1,n, wehave |o(P)—1I| = |3 f(ti)ym(4;)—I] <e.
i=1

i=1,n’

Here, I = fT fdm.

Moreover, if m is finitely additive and f = 1, then
Jp fdm = m(T).

VI) Our integral, if it exists, is unique and has the
following properties: homogeneity and additivity with
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respect to the function f and the set multifunction u,
additivity with respect to the set, monotonicity with re-
spect to the function f, to the set multifunction u, and
to the set (see [28]-[30] for details. The assumption
of monotonicity is not necessary in [29], as observed
in [30]).

VII) Let m : A — [0,1] be a submeasure of fi-
nite variation. One can easily check that the set func-
tion my : A — |0, 1] defined for every A € A by
mi(A) = sinm(A) is also a submeasure of finite
variation (since mi(A) < m(A), for every A C T).
Suppose f : T — R is bounded. Since, according
to [17], m-integrability of f is equivalent to its m-
totally-measurability and because %t <sint < t, for
everyt € [0,%), then f is m-integrable if and only if
f is my-integrable.

Theorem 31 [) Let f : T — R be a u-integrable
function. Then

‘/de“’ < sup |f (8)|-5(T).

HLetf:T — Rand A, B € A with ANB = ().
If f is p-integrable on A and p-integrable on B, then
f is p-integrable on AUB and fAuB fdp = [, fdu+
Jp fap.

1) Suppose 11 : A — Prp(X). If f : T - R
is p-integrable on T, then f is u-integrable on every
Bec A

IV)If f : T — Ris u-integrable on every A € A,
then the set multifunction M : A — P¢(X), defined
by

(xx) M(A) = /Afd,u,for every A € A,

is a monotone multimeasure, M < p and M is
strongly absolutely continuous with respect to L.
V)If f,g : T — Rare bounded functions so that
f is p-integrable on T and f = g p-a.e, then g is
u-integrable on T' and fT fdp = fT gdpu.

Remark 32 By Theorem 31-1 and Remark 10-111), we
immediately get that if p : A — Pro(X) is diffused,
then the same is M defined in (xx). Also, by Remark
30-1, if tlgjf; f(t) > 0, then the converse is also valid.

So, in this case, p is diffused if and only if the same is
M.

Proposition 33 Let my,ms : A — Ry be set func-
tions of finite variation, so that m; < mgy and
mi(0) = me(@) =0, f : T — Rand p :
A — Pic(R) the set multifunction defined by p(A) =
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[mi1(A),ma(A)], for every A € A. Then f is p-
integrable on T if and only if [ is m1-integrable on
T and mo-integrable on T and, in this case,

| gau=1[ tam. [ sims).

Proof. f is m;-integrable on 1" and my-integrable on
T if and only if for every € > 0, there exists a partition
P- of T so that for every other partitions of T', P’ =
{Ai}i 17 P" = {Bj};_1p, so that P' > P., P" >
P.andevery t; € A;,i =1,n,s; € B;,j = 1,p, we
have

D mu(A) =D f(s)mi(By)| <= k=12,
i=1 j

Jj=1

Since

it follows that for every € > 0, there exists a partition
P. of T so that for every other partitions of T', P’ =
{Ai}i:L—n,P” = {Bj}j:ﬁ’ so that P’ > P., P" >
P.andevery t; € A;,i =1,n,s; € Bj,j =1,p, we
have

f(sj)u(B;j)) <e,

n p
=1

A _f(E)(A:), )

i=1 J

which means that f is p-integrable on 7T'.

Now, let us prove that [, fdu =
[IT fdmla fT fde]

Since f is p-integrable on 7', m-integrable on T’
and mo-integrable on 7', it results that for every ¢ > 0,
there exists a partition {C} };,_77 of T so that for every
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5k € Oy b = 1,1, we have i = Ln. we have ([ fdp, 32 f(s)u(4) < %
/ fdu, Zf Sk Ck - and 80 h(% fT fdp, Z:I f(sl)%,u(AZ)) < %
Because ,l; is  semi-convex, for ev-
e ery i = 1,n, there is B; C A; so that
’/demi —Zf(sk)mz(ck)‘ S 5t= L2 B, € Aand pu(B;)) = 3u(A;), which implies
k=1 n
h(3 Jp fdp, Y f(su(By)) < 5.
Then i=1 N
Since f is p-integrable on B = |J B;, there ex-
o / fdp, | / Fdmi, / Fdma]) < | o =1
T T l T ists a partition P> = {Dy},_15 € 735; so that for
every partition P € Pp, with P > PP, we have
h d C €
(| 1 DWEVCY W[ fdi,o(P)) < 5.

On the other hand, because f is p-totally-
~B
Zf Sk) / fdma, / fdma]) = measurable on B, there is a partition P, =
{El}l:m € Pp such that u(Ey) < 12€M and
sup |f(t) — f(s)] < g5, forevery I = 1, m.

Y /T fdu,;f@k)u(ck)) tacE

Consider {D;NE; };_15 . 1—=o.m € Pp and denote
it by {C;}. For instance, C1 = D1 N Ey,Cy =

l
17
+max{‘/ fdml_z.f(sk)ml(ck) > DgﬂEo,..j.,Cq Dy ﬂEo,CS_H DN Eq etc. We
r k=1 observe that
!
€
fdmo — f(Sk)m2(Ck)) <e, (0 Ch) = 1By < and
] > il 0,0)) = 7l n) o
t;) — )| < —, fi | =s+1,q.

for every ¢ > 0 and this implies fT fdp = tj,i?fcj () = J(s9)l 6 M orevey g = s e
[IT fdmlafT fde] D

Taking m1 = 0 in Proposition 33, we obtain the Let P2 = {B; n Cj}ietm, j=1q € Pp. Since
following result. PgB > IBEB, then h(fB fdu, O'(PEB)) < %

Now, we have:
Corollary 34 Let m : A — Ry be a set function of W, WE RV

finite variation with m(0) = 0, i : C — Pi(R) the 1 1 n
set multifunction defined by u(A) = [0,m(A)], for h(2/ fdu,/ fdu) < h(2/ fdu, Zf(sz),u(B,))
every A€ Cand f : T — R. Then f is pu-integrable T B T i=1

onT if and only if f is m-integrable on T’ and, in this
on T'ifand only i ] g ([ g o(PE)+
’ B
fap=o. [ fam. " 2
J v 0 (P, Y flsm(B) < 5
i=1
Theorem 35 Let v : A — Pr.(X) be a semi-convex n
multimeasure and f : T — R a pi-totally-measurable + h(g(pf)’ Z f(si)u(By))

bounded function on T. Then M defined in (xx) is
also semi-convex.
It only remains to prove that for every ¢;; € B; N

Proof. The following statements, even they are estab- Cj,i=1,n,5=1,q,
lished for 7', remain valid for any arbitrary set A € A.

Also, according to [28], f is u-integrable on 7' and B

onevery A € A. Consider arbitrary € > 0 and let o(F Z fsi)p

M = maX{E(T),ilelglf(t)!}-

q
By the p-integrability of f on 7', there is a par- Z Z 0;)(B; N Cj), Zf( D(B;)) <
tition {4;} of T such that for every s; € Aj;, —1 =1

ol ™

i=1,n
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Indeed, we have:

DRV

n

BN Cy), D f(si)u(Bi)) =

i=1 j=1 i=1
n q
=h(Y_ Y Fi)u(BiNCy),
i=1 j=1
n q
ZZf 52 B ﬂC))
=1 j=1
<ZZ\f si) = [(0i)| - [W(Bi N Cj)| =
=1 j=1
_ZZ\f si) = [ (0ij)] - [W(Bi 0 C5)|+
=1 j=1
+Z Z |f(si) = f(0ij)] - [w(Bi N Cj)| <
=1 j=s+1
s q
<MY ECH)+ Y |f(si) = F(0;)] - B(Cy) <
j=1 j=s+1
< oM 0 C)) + —=—m( U ¢;)
szl D=
€ _ ¢
12M 6M 3
Consequently, h(3 [ fdu, [ fdp) < e, for ev-

erye > 0,50 5 [ fdu = [ fdu. Therefore, M is
semi-convex. ([l

Theorem 36 Suppose p : A — P¢(X) is monotone,
null-additive and finitely purely atomic. If f is p -
totally-measurable on T, then f is u -integrable on
T.

Proof. According to Theorem 31-11, it will be suffi-
cient to prove that f is p-integrable on every atom A
of p. First, we observe that, if A is an atom of u and
if {A;};_15; € Pa, then, there exists only one set, for
instance, without any loss of generality, A, so that
(A1) 2 {0} and pu(Az) = ... = pu(An) = {0}

Let A € Abe an atom of,u

Since f is pi-totally-measurable on A, then for ev-
ery € > 0 there exists a partition P. = {A;} of
A such that:

i=0,n

i) 11(Ao) < 557 (Where M = sup|f(t)|) and
) ii) sup |f(t) — f(s)] <z ) for every i = 1,n.
t,s€A;

Let {B;}; 1% {Cp}y—15 € Pa be two arbitrary
partitions which are finer than P. and consider s; €
Bj,j =1,k 0,cCp,p=1,s.
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We prove that
k s
W F(s)r(By),D - F(0p)u(Cy)) < &
j=1 p=1

We have two cases:

L u(Ap) 2 {0}. Then pu(A;) = ...
{0}.

Suppose, without any loss of generality that

w(B1) 2 {0}, u(Cr) 2 {0} and pu(Bp) = ... =
w(Bg) = {0}, u(C2) = ... = p(Cs) = {0}. Then
B; C Apand C; C Ay. Consequently,

k s
W~ F(si)n(B),*D ) F(0p)1(Cy))
p=1

=
(f(s1)p(B1), f(61)p(Ch)) <
( DIp(B)] + [ f(00)]|u(C1)] <

<
<2 (Ao) < €.

= u(4n) =

II. u(Ap) = {0}. Then, without any loss of gen-

erality, u(Ap) Q {0} and u(A;) = {0}, for every
i = 2,n. Suppose that u(B1) 2 {0}, u(C1) 2 {0}
and p(B) = ... = p(By) = {0},1(Ca) = ... =

w(Cs) = {0}. “Then By € Ay and C; C Ay, and,
therefore,

k
M s Zf
J=1

= h(f(s1)pu(B1), (1)M( C1)).

Since A is an atom of y and p(B;) 2 {0}, then
pw(A\By) = {0}, so u(C1\B1) = {0}. By the null-
additivity of u, we get u(C1) = u(B1). Then

k s
WD Fsi)n(B),*D ) f(0p)1(Cy))
j=1 p=1

= h(f(s1)n(B1), f(O)u(Ch))
— h(f(s1)u(Br), F(02)p(By)).

By Proposition 1, we have

f(s; j),.z f(6p)(Cyp))
p=1

€

w(T
M)
Therefore, the net (o(P))pep, is a Cauchy one in
the complete metric space (Py(X), h), hence f is -
integrable on A. O

n [8, 9], submeasures of the following type are
studied. Here, we investigate the relationship between
their Gould integrals.

Mw

J=1

< (B[ f(s1) — f(61)] <

= &.
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Theorem 37 Let (my,)nen be an uniformly bound-
ed sequence of submeasures of finite variation, m,, :
A — Ry, Vn € Nand m : A — R defined by
m(A) = supmy(A), for every A € A.

n

Suppose Ay € Aisan atomof mand f : T —
R is m-totally-measurable on T. Then [ Ao fdm =

sup [, fdmy.

Proof. By Example 3-II), m is a submeasure too. S-
ince m,, (A) < m(A), forevery A € A, then for every
n € N, f is my-totally-measurable on 7. According
to [17], f is m-integrable and m,,-integrable on 7" and
onevery A € A. By [17], on fdm, < on fdm, for
every n € N.

Since m(Ag) = supmy(Ap), we get that for ev-

n

ery € > 0, there is ng(e, Ag) = no so that m(A4p) <
Mo (Ao) + 577, where M = sup|f(t)].
teT

Because f is m-integrable and m,,,-integrable on
A, we have that for every € > 0, there is a common
partition {B;} =1k € P4, so that for every t; € By,

k
| 4, fdm— Zf(tj)m(Bj)| < gand| [, fdmp,—
Zf( $)mng(Bj)| < §-
Since {Bj},_17 € Pa,, we observe that there

can exist only one set, for instance, Bjp, so that
m(By) > 0 and m(B;) = 0, for every j = 2,k.
Then my,,(B;) = 0, for every j = 2, k.
Consequently, because m(B)
My (B1) = mp,(Ap), we have

k
[ gam<| [ gam - > Stm(s)
k
+ ‘ /Ao Jdmp, — Z:f(tj)mm)(Bj)‘

+[f(t)] - [m(B1) —
)
+/Aofdmn0 < 2+M—|—/Aofdmn0:

f dmno s
Ao

m(Ap) and

Mn (Bl

:€+

so [ A, fdm =sup i) A, fdmn, as claimed. O
n

6 Classical results for the Gould type
set-valued integral

In this section we obtain some classical theorem-
s (such as Holder inequality, Minkowski inequality,
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mean convergence theorem, Lebesgue theorem, Fatou
lemma) for the Gould type set-valued integral intro-
duced in [30].

Theorem 38 (Holder Inequality) Let m : A — R
be a submeasure of finite variation and f,g : T — R
m -integrable bounded functions on T'. Then

[ 1ot < ([ If!pdm>;-< / |germ);,

forevery p,q € (1,00), with % + é =1

Proof. Since (see [17]) for submeasures, m-
integrability is equivalent to m-totally-measurability,
then by Theorem 19-1 and Theorem 2.17 [171, | f|, 9],
|fgl, |f|P and |g|? are also m-integrable, so, for every
e > 0, there is a common partition P, = {4;}
such that for every t; € A;, i = 1, n, we have:

 Fslém = S\ segteolm)
JE Z|f (A

i=1n

W ™

— and

€
/T\gldm— ;|g(tz)]m(Az) <z
Since
Z|f(ti)g(ti)|m(Ai)
i=1

n

> [1£E)] (m(4:))? -

} <
=1

(Sowearmca ) (Steapnca )

we immediately have the conclusion. g
Using the above theorem, we obtain the
Minkowski inequality, by a classical proof.

Q=

l9(t:)] (m(A4s))

IN

Theorem 39 (Minkowski inequality) Let m : A —
R be a submeasure of finite variation and f, g : T —
R m -integrable bounded functions onT'. Then

(e gwdmy <( [ 1sram) ;+</T Ig|pdm); ,

foreveryp € [1,4+00).

If m : A — Ry is a submeasure of finite varia-
tion, we consider the space LP = {f : T — R; f is
bounded on T and | f|P is m-integrable on T'}.
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Remark 40 From Theorem 19-11, it results that if
f,g € LP, then f + g € LP. So, LP is a linear s-
pace.

Corollary 41 Let m : A — Rybe a submeasure of

finite variation and p € [1,+00). Then the function

|| || : LP — Ry, defined for every f € LP by || f|| =
1

(J7 | fIPdm)®  is a semi-norm.

Definition 42 Let 1 : A — Py(X) be a set mul-
tifunction with () = {0}. If for every n € N,
fn T — R is p-integrable on T, then the se-
quence (fy) is said to be mean convergent to [ on

T z'fnli_>rro1o J7(fn = f)dp = {0} (with respect to h).

Theorem 43 (Mean Convergence Theorem) Let L :
A — Pre(X) be a set multifunction of finite vari-
ation, with u(0) = {0} and f, : T — R, for ev-
ery n € N. Suppose (f,) is an uniformly bound-
ed sequence of p-integrable functions such that ( fy,)
is convergent in submeasure to a bounded function
f T — R. Then f is p-integrable on T and on
every A € A,

(fn = f)dp = {0}

lim
n—o0 A

(with respect to h)

Proof. Let M’ = u(T), My = sup|f(t)|, M>

teT

sup |fn(t)| and M = max{My, Ma}.

teT neN

Since f, LN f, it results that for every ¢ > 0,
there exists no(e) € N so that 4(By (5577)) < 137>
for every n > ny.

Particularly, i(Bn, (5577)) < 737- BY the defini-
tion of 1z, there is Cy, € A so that By, (g57) € Chg
and ﬁ(Cno) = ﬁ(Cno) < ﬁ

First, we prove that f is p-integrable on (). In-
deed, for every ¢ > 0, there is a partition P.
{Cny} € Pc,, so that, for every other partition
P = {Di},_1; € Pc,,, with P > P: and every

t; € D, 1 =1,pand c € Cp,, we have:
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Consider another partition ' = {E },_1- € Pc,,

with P’ > P. and r, € E,, s = 1, q, arbitrarily.
In a similar way we

(S FIH(E) SO(Co) ) < 5. whence
h (lil Ft)u(Dy), é f(rs)p(Es)> < & Then f is

p-integrable on C,.

Consequently, according to Theorem 31-II, in or-
der to prove that f is u-integrable on 7', it is sufficient
to establish the p-integrability of f on T\C,,,.

Since for every n € N f,, is u-integrable on T,
then f,, is u-integrable on T\C,,,. Consequently,
there is a partition P {Ai}z’:m € Prc,,
so that, for every other partition P € PT\Cnos with
P > P, we have h(o(P),o(P')) < 5.

Let P = {Dj}j:fl S pT\CnO’ with P > Pgno be
arbitrarily, but fixed. For every t; € D;, j = 1,1 and
every ¢; € A;, i = 1, my,, we have:

get

R F(E)r(Dy), Y fle)n(Ay))
j=1 i=1

+h <Z Froc)n(43), ) f(Ci)M(Ai)) <
=1 =1

<TA(T\Cry) - sup |f(t) = fno(t)]
tEcBn0
g _
+ § + M(T\Cno) © Sup ’f<t> - fno(t)’ <
tEcBnO
’ 15 E I g _
<M 6M’+3+M W €.

A similar inequality for every other partition P’ €
PT\CnO’ with P’ > P, may analogously be ob-
tained. Then, by the triangular inequality, f is u-
integrable on T'\C,,, and, according to Theorem 4.5-
I, f is p-integrable on 7.

Now, we prove that lim [.(f, — f)du = {0}

n—oo

with respect to h. According to Theorem 31-II1, there
exist [, fdpand [, fndp, for every n € N and every
Ac A

We shall use the same B,, (ﬁ), with n > ng,
as before. By the definition of i, we get that for every
n > no, there exists C, € A so that B,,(g177) € Cn
and 11(Cp) = 1(Cp) < ﬁ
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Then, for every n > ng, we have: sequence of uniformly bounded, [i-totally-measurable
functions f, : T — R. Then
| [ Do =] [ (=
A A\Cn / liminf f,,dy < lim inf/ frdp.
T " n T
S RCE
ANCy,

Proof. For every n € N, consider g,, defined for every

< sup [ fu(t) — f(E)] - (A\Ch) t € T by gn(t) = inf fr(¢). Letalsobe f : T — R,
te A\Cy, k>n
b osup [falt) — FOO)] - TANCy) < ft) = T}LIgogn(t), for every ¢ € T. We observe that
te?mc" gn =5 fand g, < fn, forevery n € N.
< er - M’ According to Theorem 24, (g,), is also a se-
e e quence of uniformly bounded, ji-totally-measurable
+2M - i(Cy) < 5t 2M - AR functions, so, by Corollary 25, f is p-totally-
measurable on 7.
so lim [,(f, — f)du = {0} (with respect to h), for By [17], fn and f are pi-integrable on T, for every
n—o0 N
Aec A o e -
every A € 4 Since ¢, =5 f and i is an o-continuous submea-
Theorem 44 (Lebesgue type Theorem) Let 1 : A — sure on P(T’), then, according to Li [23], g, %+ f, so,
Pre(X) be a set multifunction of finite variation, with by [13],
u(@ = {0} and f, : T — R, for every n € N.
Suppose (fn)n is an uniformly boundec{ sequence of / lim inf f,,dp = / fdu = lim / gndy.
u-integrable functions such that (fy,), is convergent T "N T n—o0 Jp
in submeasure to a bounded function f : T — R.
Then, f is ji -integrable on every A € A and Consequently,
lim fndp = / fdu (with respect to h). / liminf f,dp = lim inf/ Gndp
n—oo J 4 A T " n T
Proof. By the proof of Theorem 43, it results that f is S limninf /T fndp.
p-integrable on every A € A. Using the same sets as
before, we have for every n > ng and every A € A: This completes the proof. ]
([ gudn [ sa
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+ sup [fu(t) = f(O] - RANC,) < — M 24 (1975), 23-29.
teANCy, 6M
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